Active Data Validation (ACTION)

IoT-Anwendungen können durch Domänenexperten mithilfe von Entwicklungsumgebungen modellgetrieben entwickelt werden. Beim Betrieb derartiger IoT-Anwendungen können Fehlerfälle auftreten, die nicht durch existierende Monitoringsysteme erkannt werden, z.B.  falsch gemessene Sensorwerte. Ziel dieses Projektes ist es, derartige Fehlerfälle mittels Datenvalidierung schon bei der modellgetriebenen Anwendungsentwicklung zu berücksichtigen und so aktiv zu einer verbesserten Fehlertoleranz beizutragen.

Continue reading →

Improvement of the Prediction Quality by using Domain Knowledge in the Partitioning of Training Data (VALID Partition)

This project deals with data characteristics that often occur in industrial use cases. Therefore, it investigates how a targeted data preparation can be used to address such data characteristics. If several of these data characteristics are present in combination, purely data-driven methods are usually not able to address them sufficiently. Therefore, it will be explored how existing domain knowledge of the industry partner can be used in a targeted way to enable more meaningful analysis results. This will then be investigated and evaluated on the basis of real use cases of the industry partner.

Continue reading →

Rahmenwerk zur Auswahl und Konfiguration komplexer Datenanalyselösungen für die Produktion

Im Rahmen dieses Projekts werden domänenspezifische Faktoren für die Auswahl und Konfiguration geeigneter ML-Algorithmen in der Produktion untersucht. Ein auf Basis dieser Untersuchung vorgeschlagenes Rahmenwerk ermöglicht die Spezifikation aller für eine Analyselösung erforderlichen Komponenten. Zusätzlich zu den Daten, der IT-Recheninfrastruktur und der ML-Algorithmen können über entsprechende Spezifikationen auch die Problemstellung der Analyselösung über domänenspezifische Zielsetzungen und Anforderungen definiert werden. Ebenso erlaubt es das Rahmenwerk, verschiedene Experten aus der jeweiligen Anwendungsdomäne und aus der Informatik bzw. den Datenwissenschaften in den Entwicklungsprozess einzubeziehen und deren Zusammenarbeit besser zu strukturieren.

Continue reading →

Plattform zur Verwaltung von Modellen des maschinellen Lernens im Umfeld von Industrie 4.0

In diesem Projekt wurde das Konzept eines Reifegradmodells und verschiedene Konzepte für eine Modellverwaltungsplattform entwickeltDie Modellverwaltungsplattform unterstützt Domänenexperten mit Funktionen zur Verschlagwortung der ML-Modelle und einer Suche, sodass diese ihre ML-Modelle besser organisieren und auffinden können. Business Analysten werden mit einer interaktiven Modelllandschaftskarte unterstützt, mit der die ML-Modelle mit ihrem umgebenden Geschäftskontext, z. B. mit Geschäftsprozessen und Organisationseinheiten, dokumentiert werden können.

Continue reading →